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Abstract— Electrocardiogram (ECG)-based arrhythmia detection is a critical task in modern healthcare, enabling early diagnosis of 

life- threatening cardiac conditions. In recent years, deep learning models—particularly convolutional neural networks (CNNs)-have 

shown remarkable performance in automatically identifying abnormal heart rhythms. This paper presents a review of ECG arrhythmia 

detection methods with a primary focus on 2D CNN architectures applied to time-frequency representations of ECG signals. We detail 

our implementation of a 2D CNN-based classification model, trained and evaluated on the MIT-BIH Arrhythmia Database, achieving a 

classification accuracy of 86.12%, along with robust sensitivity and specificity metrics. 

While 2D CNNs effectively capture spatial patterns in ECG transformations such as spectrograms or Gramian angular fields, recent 

advancements offer promising alternatives. We review emerging techniques including transformer-based architectures (e.g., 

ECG-BERT), self-supervised representation learning, and federated learning approaches that address generalization, data scarcity, and 

privacy concerns. By integrating our findings with a discussion of current state-of-the-art methods, this paper provides a comprehensive 

perspective on the evolving landscape of deep learning-based ECG arrhythmia detection. Future work aims to hybridize 2D CNNs with 

transformer models for improved temporal modeling and real- time deployment on wearable devices. 

 

Index Terms— Arrhythmia Detection, 2D Convolutional Neural Networks (2D CNNs), Deep Learning, Time-Frequency 

Representations, Spectrograms, ECG-BERT. 

 

I. INTRODUCTION 

Cardiovascular diseases remain a leading cause of 

mortality worldwide, with arrhythmias—irregular heart 

rhythms posing significant diagnostic and therapeutic 

challenges. Early and accurate detection of arrhythmias is 

crucial to prevent severe complications such as stroke, heart 

failure, or sudden cardiac arrest. Electrocardiography (ECG), 

a non-invasive and widely accessible diagnostic tool, plays a 

pivotal role in monitoring and diagnosing cardiac rhythm 

abnormalities [1]. 

Despite its clinical utility, ECG analysis presents several 

challenges. The signals are often affected by noise from 

muscle activity, baseline drift, and variations in electrode 

placement. Additionally, inter- patient variability and the 

subtle nature of some arrhythmic patterns make manual 

interpretation complex and time-consuming. Another major 

bottleneck in automated analysis is the limited availability of 

annotated ECG data, which is essential for training reliable 

diagnostic models [2]. 

In recent years, deep learning has emerged as a 

transformative approach in medical signal processing, 

offering state-of-the-art performance in image and sequence 

classification tasks. Specifically, convolutional neural 

networks (CNNs) have demonstrated substantial success in 

learning discriminative features from raw or transformed 

ECG signals, surpassing traditional machine learning 

methods that rely heavily on hand-crafted features [3], [4]. 

Motivated by the visual nature of 2D representations of 

ECG data—such as spectrograms or recurrence plots—this 

study explores the use of 2D CNN architectures for 

arrhythmia detection. By leveraging the spatial feature 

extraction capabilities of 2D CNNs, we aim to capture 

meaningful patterns that may not be apparent in raw 1D 

signals [5]. Furthermore, this paper incorporates a review of 

recent deep learning trends, including transformer-based 

models, self- supervised learning, and federated frameworks, 

to highlight the evolution of this field and propose directions 

for enhancing model generalizability, interpretability, and 

deployment in real-world healthcare settings [6], [7]. 

II. LITERATURE SURVEY 

A. Traditional Machine Learning Approaches 

Traditional machine learning (ML) methods have played 

an essential role in the early development of ECG arrhythmia 

classification systems. Techniques such as Support Vector 

Machines (SVMs), Decision 

Trees, and k-Nearest Neighbors (k-NN) have been applied 

using hand-crafted features derived from time- domain and 

frequency- domain analysis [8], [9]. These features often 

include RR intervals, QRS complex widths, and heart rate 

variability measures. However, such models heavily rely on 

domain expertise for feature engineering and may not 

generalize well across datasets with high variability [10]. 
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B. Deep Learning and 2D Convolutional Neural 

Networks 

The limitations of traditional ML approaches have led to 

the adoption of deep learning models, particularly 

Convolutional Neural Networks (CNNs). 1D CNNs have 

been used to learn hierarchical features directly from raw 

ECG signals, but recent work has shown that 2D CNNs can 

perform even better when ECG signals are transformed into 

two- dimensional representations such as spectrograms, 

scalograms, or Gramian Angular Fields [11], [12]. These 

representations allow models to capture both temporal and 

frequency information. 

Jun et al. [2] demonstrated that 2D CNNs trained on 

spectrogram-transformed ECG beats significantly 

outperform traditional ML methods and even some 1D CNN 

models. This shift from signal-level to image- level 

processing has opened the door to applying successful 

computer vision architectures (e.g., VGG, ResNet) to ECG 

classification tasks. 

C. Recent Trends in ECG Arrhythmia Detection 

As ECG analysis has matured, research focus has shifted 

toward models that offer better performance, generalization, 

and interpretability. Several emerging deep learning 

paradigms have been introduced to overcome existing 

limitations such as data scarcity, low robustness to 

variability, and real-world deployment challenges. 

D. 1D CNN-LSTM HYBRIDS 

Hybrid architectures  that combine Convolutional Neural 

Networks (CNNs) with Long Short-Term Memory (LSTM) 

networks have become increasingly popular in arrhythmia 

detection tasks. CNNs are effective at extracting local 

patterns from ECG signals, such as QRS complexes and 

T-wave morphologies, while LSTMs can capture temporal 

dependencies and sequential patterns across beats [5]. This 

synergy enables the model to handle both spatial and 

temporal characteristics of ECG signals, leading to improved

  classification performance for arrhythmias like atrial 

fibrillation, ventricular ectopy, and supraventricular 

tachycardia. 

E. Transformer-based Models (e.g., ECG- BERT) 

Transformers, particularly models adapted from BERT 

(Bidirectional Encoder Representations from Transformers), 

have demonstrated strong potential in ECG signal modeling 

[15]. Unlike recurrent architectures, transformers use self- 

attention mechanisms to model long- range dependencies 

across the input sequence without sequential processing. 

ECG-BERT learns contextual representations of heartbeats 

across long-duration signals, leading to better performance in 

tasks such as beat classification, rhythm detection, and even 

patient- specific abnormality identification. These models 

also facilitate transfer learning and fine-tuning across ECG 

datasets. 

F. Self-Supervised ECG Representation Learning 

One major bottleneck in ECG analysis is the lack of 

large-scale labeled datasets due to the requirement of expert 

annotation. Self-supervised learning addresses this issue by 

enabling models to learn useful representations from 

unlabeled ECG signals through pretext tasks such as beat 

masking, temporal shuffling, or contrastive learning [14]. 

Once pre- trained, the model can be fine-tuned on small 

labeled datasets, achieving competitive performance. This 

approach has shown strong generalization and is particularly 

useful for rare arrhythmias where data is inherently limited. 

G. Graph Neural Networks (GNNs) in ECG Analysis 

GNNs have been introduced to capture spatial 

relationships and inter-lead dependencies in multi-lead ECG 

recordings [15]. Unlike CNNs or RNNs, GNNs can model 

ECG data as a graph where nodes represent leads or 

segments, and edges encode physiological or temporal 

relationships. This is particularly beneficial for 12-lead ECG 

interpretation where the spatial distribution of electrical 

activity across the heart is important for diagnosis. GNNs 

have shown improved performance in detecting myocardial 

infarction and localizing ischemic regions when combined 

with clinical metadata. 

H. Federated Learning for Privacy- Aware ECG Systems 

With increasing concerns over patient data privacy and 

regulatory compliance (e.g., GDPR, HIPAA), federated 

learning (FL) has emerged as a solution for training AI 

models on distributed ECG datasets without sharing raw data 

[16]. In FL, local models are trained on-device or in- clinic, 

and only the model updates are aggregated on a central 

server. This approach enables collaborative learning across 

hospitals or wearable devices, making it feasible to build 

robust and diverse ECG models while preserving data 

ownership and privacy. 

III. PROPOSED METHODOLOGY 

A. Data Pre-processing 

The initial phase of the project focused on data pre- 

processing, a crucial step to ensure the quality and suitability 

of the ECG signal data for subsequent model training. 

Data Loading: The ECG signal data was loaded from 

CSV files, consisting of Signal Data and Labels. The Signal 

Data represents the recorded ECG signal values, and the 

Labels indicate the category or type of arrhythmia for each 

ECG signal. 

Addressing Class Imbalance: The dataset exhibited class 

imbalance, with some arrhythmia types being more prevalent 

than others. To mitigate this issue, techniques such as 

oversampling and under sampling were employed to ensure a 

more balanced distribution of classes. 

Data Augmentation: To further enhance the model's 

generalization capabilities, data augmentation techniques 
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were applied, such as signal shifting, scaling, and noise 

injection. 

B. Model Architecture 

The proposed 2D CNN model was designed to process the 

ECG signals as images, leveraging the powerful feature 

extraction capabilities of convolutional layers. The model 

architecture consisted of multiple convolutional, pooling, and 

fully connected layers, followed by a final softmax layer for 

classification. 

[17] The input to the 2D CNN model was the ECG signal, 

which was reshaped into a 2D image- like format. This 

allowed the model to capture the spatial and temporal 

relationships within the ECG data, crucial for accurate 

arrhythmia detection. 

C. Training and Evaluation 

The 2D CNN model was trained using the Adam optimizer 

and Categorical Cross- Entropy loss function. Early stopping 

with model checkpointing was implemented to prevent 

overfitting and ensure the model's generalization.The trained 

model was evaluated on the test dataset, and the performance 

was assessed using various metrics, including accuracy, 

precision, recall, and F1-score. 

IV. RESULTS 

The 2D CNN model achieved an impressive accuracy of 

86.12% on the test dataset, demonstrating its proficiency in 

accurately identifying different arrhythmia patterns. [19] The 

model's performance 

was further analyzed using confusion matrices and ROC 

curves, providing insights into the classification of individual 

arrhythmia types. The results highlighted the model's ability 

to effectively distinguish between various cardiac 

abnormalities, including Left Bundle Branch Block (LBBB), 

Right Bundle Branch Block (RBBB), Paced Beat (PB), Atrial 

Premature Beat (APB), and First-degree AV 

Block (AVB), as well as normal heart beats. [17] 

 
Fig. 1. Ventricular Type arrhythmia 

 
Fig. 2. Fusion Type arrythmia 

The systematic approach to data pre- processing, including 

addressing class imbalance and implementing data 

augmentation, played a crucial role in enhancing the model's 

performance. The 2D CNN architecture's capacity to extract 

meaningful features from the ECG signals as images 

contributed to the model's superior accuracy compared to 

traditional machine learning techniques. [17][18] 

V. DISCUSSION 

A. Strengths of the Proposed Approach  

This study demonstrates the effectiveness of using 2D 

Convolutional Neural Networks (CNNs) for ECG arrhythmia 

detection, especially when time-frequency transformations 

such as spectrograms are applied to the ECG signals. These 

2D representations allow the model to exploit spatial 

hierarchies and extract both temporal and frequency features, 

resulting in improved classification performance compared 

to traditional ML or 1D CNN approaches [2], [12]. Our 

approach simplifies the feature extraction process and 

leverages architectures proven effective in computer vision 

tasks like ResNet or VGG [20]. 

B. Limitations 

Despite its high performance, the proposed method has 

notable limitations. One key issue is interpretability. Deep 

CNNs act as "black boxes," making it difficult for clinicians 

to understand the rationale behind predictions [21]. This lack 

of transparency is a barrier to clinical adoption. Additionally, 

our model's generalization to ECG data from other sources 

(e.g., different hospitals or wearable devices) may be limited 

due to variations in signal morphology, sampling rates, and 

noise characteristics [22]. Domain adaptation and model 

calibration are necessary to address this challenge. 
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C. Opportunities for Improvement Through Recent 

Trends 

a. Fine-Tuning Transformers with ECG Data 

Transformer models, such as ECG- BERT and ECG- ViT, 

have shown great promise in modeling long-term 

dependencies in ECG data. By fine- tuning pre-trained 

transformer models on ECG-specific tasks, researchers have 

achieved significant improvements in both accuracy and 

explainability through attention mechanisms [15]. 

Combining 2D CNNs with transformers (e.g., hybrid 

CNN-transformer pipelines) may further enhance both 

performance and clinical insight. 

b. Semi-Supervised Learning for Limited Labels 

Due to the scarcity of annotated ECG data, especially for 

rare arrhythmias, semi-supervised learning techniques are 

gaining traction. Methods such as contrastive learning, 

pseudo-labeling, and consistency regularization allow deep 

models to leverage large volumes of unlabeled ECG signals 

[16]. These methods improve generalization and robustness, 

particularly in low-resource settings. 

c. Real-Time Application Using Edge Devices 

As ECG monitoring becomes more prevalent in wearable 

technology, the need for real-time, low- power inference has 

become essential. Model compression techniques such as 

pruning, quantization, 

and knowledge distillation are being used to deploy 

lightweight versions of CNNs and transformers on edge 

devices [23]. Federated learning further supports real-time, 

privacy- preserving training and inference in distributed 

environments [24]. 

VI. FUTURE SCOPE 

The growing availability of ECG data and the rapid 

advancement of deep learning techniques offer significant 

opportunities for further improving arrhythmia detection 

systems. Building upon the promising results of 2D 

CNN-based approaches, the following future directions are 

proposed: 

A. Integration WITH TRANSFORMER Architectures: 

Transformer-based models such as ECG- BERT and 

ECG-ViT [2], [15] offer powerful sequence modeling 

capabilities and global context understanding through 

self-attention mechanisms. Integrating CNN-extracted 

features with transformer layers could enhance both temporal 

modeling and interpretability, potentially leading to better 

performance in long-duration ECG monitoring and beat-wise 

diagnosis. 

B. Multimodal Physiological Signal Fusion: 

Incorporating additional biosignals such as 

Photoplethysmogram(PPG), phonocardiogram (PCG), or 

respiration data along with ECG can improve diagnostic 

accuracy in complex cases [10]. Multimodal learning 

frameworks can help in disambiguating noise,providing 

complementary insights, and enabling more holistic patient 

monitoring. 

C. Personalization via Few-Shot and Meta- Learning: 

Current models often struggle with patient- specific 

variations in ECG morphology. Few- shot learning and 

meta-learning techniques [25] can enable personalization by 

adapting to new individuals using only a small number of 

labeled samples, enhancing model accuracy without 

requiring large-scale retraining. 

D. Real-Time Deployment on Wearables: 

There is growing demand for real-time ECG analysis in 

wearable devices. Future research should focus on 

optimizing models for embedded hardware using 

quantization, pruning, and edge AI frameworks [26], [27]. 

These developments could support continuous arrhythmia 

monitoring and early warning systems in real-world, mobile 

settings. 

VII. CONCLUSION 

Accurate and timely arrhythmia detection remains a 

critical objective in cardiovascular healthcare. With millions 

at risk of sudden cardiac events, automated ECG analysis 

systems powered by deep learning have the potential to 

transform diagnosis, monitoring, and preventive care. 

This paper reviewed the evolution from traditional 

machine learning to deep learning- based approaches, with a 

particular focus on the application of 2D Convolutional 

Neural Networks (CNNs). By transforming ECG signals into 

two-dimensional representations and leveraging spatial 

feature extraction, our CNN-based approach demonstrated 

strong classification performance and reduced dependence on 

handcrafted features. 

However, the field is rapidly evolving. The integration of 

modern AI techniques— including transformers, 

self-supervised learning, and federated training— offers 

exciting avenues to address existing limitations in 

generalization, interpretability, and real-world deployment. 

As ECG analysis systems continue to mature, combining 

technical innovation with clinical relevance will be key to 

delivering robust, scalable, and patient-centric solutions. 
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